If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=589
We move all terms to the left:
x^2-(589)=0
a = 1; b = 0; c = -589;
Δ = b2-4ac
Δ = 02-4·1·(-589)
Δ = 2356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2356}=\sqrt{4*589}=\sqrt{4}*\sqrt{589}=2\sqrt{589}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{589}}{2*1}=\frac{0-2\sqrt{589}}{2} =-\frac{2\sqrt{589}}{2} =-\sqrt{589} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{589}}{2*1}=\frac{0+2\sqrt{589}}{2} =\frac{2\sqrt{589}}{2} =\sqrt{589} $
| 14j-17j+14j=-11 | | 19a-19a+2a=18 | | -7x+4=3x-1 | | 1.36x=10.88 | | -2(3x+7)=2x=6 | | 5x=2x=5x+40 | | 8g+5-4g=25 | | 9q-q-7q-q+4q=20 | | 6(x-2=9x-15 | | 1-2/x=8/5x-1/5 | | 89g+5-4g=25 | | 4c-4c+4c=8 | | 4(x+5)-2x=4(x+8)-6 | | 18d-12d-4d+3d=5 | | 1/7+1/3/x=6/7 | | -31-4x=-5-5 | | 2(34)+38=x | | 5(2-x)+7x=3x+15 | | -5w+3=7(w-4) | | 8.97+n=21.97 | | 16+2-30x=-90 | | 9n-6n=18 | | 1 3(2x−3 7)+1 6x=4 7 | | 11m-10m=12 | | 4(x-5)=5×+1 | | 7/8x+3/4x+7/16x−1/16=5/8 | | n-15.11=2.11 | | 16+2-30x=90 | | 2w-w=7 | | 5a-4a=9 | | 2x+38=1.50x+55 | | 3/4n=93/4 |